牛顿迭代解方程 ax^3+bX^2+cx+d=0
$$ ax^3+bX^2+cx+d=0 $$
根的关系:
$$ x1 + x2 + x3 = (-\frac{b}{a}) $$
$$ x1 \times x2 + x1 \times x3 + x2 \times x3 = \frac{c}{a} $$
$$ x1 \times x2 \times x3 = (-\frac{d}{a}) $$
牛顿迭代解方程(x0附近的根)
double Newton_Iterative(double a,double b,double c,double d,double x0)
{
double f0,f0d,x;
x = x0;
do
{
x0 = x;
f0 = ((a * x + b) * x + c) * x + d;
f0d = ( 3 * a * x + 2 * b ) * x + c;
x = x0 - f0 / f0d;
}
while(fabs(f0) >= 1e-12);
return x;
}
牛顿迭代法